1. NOTA INTRODUTÓRIA

Os métodos tradicionais para estimar indiretamente mortalidade e fecundidade pressupõem, como é sabido, estabilidade nos níveis e populações fechadas, entre outros. É sabido também que nos países sub-desenvolvidos - em razão do desenvolvimento tecnológico, da intensificação dos meios de comunicação de massa e da capacidade cada vez maior da população em reagir às circunstâncias sócio-econômicas do meio - o comportamento destas variáveis escapa cada vez mais dos requerimentos acima citados, tornando cada vez menos viável o uso destes métodos para medi-las.

Face a isto, a evolução das técnicas de mensuração indireta tem-se orientado justamente à incorporação desta realidade. Entre tais tentativas, com maior ou menor êxito, podemos citar os estudos de BENNET e HORICHI (1982), PRESTON e COALE (1982), COALE (1984 a) e SANTOS et allí (1985) entre outros.

Nesta oportunidade, tenta-se mostrar a aplicação de um método que poderíamos denominar "de taxas de crescimento variáveis" a dados do Brasil. Concretamente é um exercício que permite obter taxas de fecundidade por idade a partir única e exclusivamente de dados de parturição por idades simples registrados em dois censos. No caso os de 1970 e 1980.

A presente aplicação segue as explicações de COALE et allí (1984 a) contidas em um documento apresentado por ocasião do seminário que discutiu am-

(*) Demógrafa da Fundação Sistema Estadual de Análise de Dados - SEADE.
plamente as questões mencionadas (1).

Desta forma, sendo necessário recorrer sempre ao embasamento teórico em que se apoiam as estimativas aqui obtidas, o trabalho inicia-se com alguns dos enunciados contidos no citado documento. A seguir explica-se sucintamente o processo de cálculo, apresentam-se os resultados obtidos e finalmente são feitas algumas considerações a respeito do método.

2. O CONCEITO DE ESTABILIDADE E O CRESCIMENTO VARIÁVEL POR IDADE DA POPULAÇÃO

A idéia inicial é a de que as relações encontradas numa população estável podem ser generalizadas — com algumas modificações — a qualquer população (COALE et alii, 1984 a). O princípio regente seria então, considerar a taxa de crescimento \(r \), em função da idade: \(\int_0^a r(x) dx \).

Assim, a relação geral da densidade da população na idade \(a \) seria:

\[
N(a) = N(0) e^{-\int_0^a r(x) dx} \int_0^a \mu_1(x) dx
\]

(1)

Isto é, a função de densidade da população à idade \(a \) está referida a \(r(x) \) e a um conjunto de riscos \(\mu_1(x) \) — positivos ou negativos — aos quais a população está sujeita. Então:

\[
N(a) = \int_0^a \left[A(x) - D(x)\right] e^{-\int_x^a r(y) dy} dx
\]

(2)

\[
N(a) = \int_a^\infty \left[A(x) - D(x)\right] e^{-\int_a^x r(y) dy} dx
\]

(3)

Uma distribuição por idade qualquer está determinada pelo número de entradas e saídas desde a idade zero até a idade \(a \) (ou desde a idade \(a \) até a maior idade atingida) num dado momento, mais a taxa de crescimento por idade.

\(N(a) \) deve ser interpretada como o número de pessoas que alcançou a idade

(1) "Workshop on the use of age specific population growth rates for demographic measurement in Latin America". CELADE — Santiago — Novembro 1984.
de a durante um período determinado; \(u_i(x) \) é uma taxa média de saídas a idade \(x \) durante esse período; \(r(x) \) é a taxa média de crescimento do número de pessoas atingindo a idade \(x \); e \(A(x) \) e \(D(x) \) o total de entradas e saídas (incluídos emigrantes e imigrantes) durante o período.

As relações anteriores, afirmam os autores, são aplicáveis a qualquer classe ou variável que contenha as propriedades intrínsecas ao conceito de uma coorte: a de ser um ano mais velha que o passar de um ano calendário e acumular (ou diminuir) por adição ou perda ao mesmo tempo em que aumenta sua idade com a passagem do tempo.

Desta forma, no estudo da fecundidade, as relações anteriores podem aplicar-se ao fenômeno da parturição. O conceito de coorte não se aplica desta vez às mulheres. Não interessa o número de mulheres, interessa sim a parturição - entendida como uma coorte que vai aumentando com a idade.

Assim, a relação (2) pode ser re-interpretada:

\[
P(a) = \int_0^a f(x) \, dx - \int_0^a r(y) \, dy \, dx
\]

onde \(P(a) \) é a parturição média à idade \(a \) no momento \(t \); \(f(x) \) é a taxa de fecundidade à idade \(x \) no momento \(t \); e \(r(y) \) é a taxa de incremento da parturição à idade \(y \) no momento \(t \).

Quando referida a dois momentos \((t_1 \) e \(t_2) \) a relação anterior implica no seguinte:

- \(P(a) \): é a parturição à idade \(a \) - valor médio - ao longo do intervalo entre \(t_1 \) e \(t_2 \)
- \(f(x) \): é a taxa específica média à idade \(x \) neste intervalo
- \(r(y) \): é a taxa média de incremento na parturição à idade \(y \) nesse intervalo.

Voltando à relação anterior, deve-se notar que esta implica numa rela-
ção entre a parturição média à idade exata \(a + 1 \) e à idade exata \(a \), da forma:

\[
P(a + 1) = P(a) e ^ { - \int_a^{a+1} r(x) dx + \int_a^{a+1} f(x) e ^ { - \int_x^{a+1} r(y) dy dx}}
\] (5)

O expoente negativo do primeiro termo \(- \int_a^{a+1} r(x) dx \) é aproximadamente igual a \(i^a \): taxa média de incremento da parturição das pessoas entre as idades exatas \(a \) e \(a + 1 \). Isto é, a taxa média de incremento de \(1^a \).

O segundo termo da relação é aproximadamente igual a \((1^{a}) e ^ {-1^{a}/2} \), dando que \(\int_a^{a+1} f(x) dx \) é a fecundidade das mulheres entre \(a \) e \(a + 1 \). Como \(x \) avança de \(a \) a \(a + 1 \) o valor total de \(\int_a^{a+1} r(y) dy \) é aproximadamente igual à metade de \(\int_a^{a+1} r(y) dy \).

Consequentemente, a relação (5), simplificada é:

\[
P(a + 1) = (P(a) e ^ { -1^a}) + \int_a^{a+1} e ^ { -1^a/2} \] (6) e

\[1^{a} = P(a + 1) e ^ {1^a/2} - P(a) e ^ { -1^a/2} \] (7)

Sendo que o presente estudo está orientado à aplicação destas relações num período intercensitário, deve ser notado que \(1^{a} \), isto é, a taxa média de incremento durante o período da parturição média das mulheres às idades \(a \) a \(a + 1 \), define-se como:

\[
(1^a(t_1) - 1^a(t_2)) / \int_{t_1}^{t_2} 1^a(t) dt
\] (8)

\(1^a(t) \) é a parturição média entre as idades exatas \(a \) e \(a + 1 \) no momento \(t \). Na relação (5), \(P(a) \) é a parturição média à idade exata \(a \) ao longo do intervalo entre \(t_1 \) e \(t_2 \).

COALE et alii (1984 b) tem demonstrado, a partir de dados completos,
que as relações anteriores reproduzem com muita aproximação o nível e o padrão da fecundidade para a metade do período intercensitário, sendo que uma das vantagens que a metodologia oferece é a ausência do suposto de estabilidade no fenômeno estudo - no caso, a parturição por idade. Por outro lado, oferece vantagens de ordem prática, como a pouca quantidade de dados (apenas a parturição por idades simples nos dois censos ou pesquisas) e um processo de cálculo que implica uma estrutura computacional bastante simples.

Inicialmente é preciso calcular a parturição à idade exata para cada coorte que alcança a idade entre os dois censos: \(p_i(a) \) para a i-ésima coorte, as mesmas que serão as de os censos estão separados dez anos. Desta forma, a parturição média das mulheres que atingiram a idade durante um intervalo censitário de 10 anos será:

\[
\frac{\sum_{i=1}^{10} p_i(a)}{10}
\]

Partindo dos dados registrados sobre parturição por idades simples dos censos de 1970 e 1980 (Tabela 2) o primeiro passo é calcular mediante uma interpolação linear os valores de cada \(p_i(a) \) proveniente da parturição de uma coorte dada no primeiro censo \(1^x_{t_1} \) e \(1^x_{t_2} \) da mesma coorte no segundo censo.

A interpolação linear é feita ponderando os valores registrados no censo, segundo o tempo transcorrido para determinar o valor de \(p(a) \), de maneira tal que:

\[
p(a) = (1-W) \left(1^x_{t_1} \right) + W \left(1^x_{t_2} \right)
\]

onde:

\(W \) é o fator de ponderação \((a - x - 0.5)/T\)

\(T \) é \(t_2 - t_1 \)

No caso, por exemplo, a parturição à idade exata 24 da coorte que tinha 22-23 anos no primeiro censo é:

\[
p_{24} = p_{24}^{(t_1)} \left(1 - \frac{(24-22.5)}{10} \right) + p_{24}^{(t_2)} \left(\frac{(24-22.5)}{10} \right)
\]

1219
Obtém-se, desta forma, uma primeira estimativa, embora grosseira, dos valores médios de \(P(a) \). Trata-se como foi dito, de um valor médio correspondente às dez coortes que alcançaram a idade exata a durante o intervalo censtátrio (Coluna 1 da Tabela 3). De qualquer forma, é um valor inicial para estimar as taxas de fecundidade por idade (\(f_x \)) mediante a relação (7). Esta primeira estimativa aparece na Coluna 1 da Tabela 4, sendo portanto a primeira aproximação do nível de fecundidade para o período intercensitário.

É a partir deste ponto que se incorpora ao dado a noção de taxa de crescimento diferenciada por idade, pois para cada \(a \) calcula-se um \(P_x \) diferenciado, fato lógico pois face ao constatado declínio da fecundidade, no conjunto de coortes de mulheres que atravessaram o período 1970-80, as mais novas terão um valor de \(P \) menor do que as mais velhas através do tempo.

As estimativas iniciais de \(f_x \) são acumuladas a fim de ter uma sequência hipotética de \(P^*(x) \) (Coluna 2 da Tabela 2). Isto é, o que seria a parturição que experimentaria uma população hipotética sujeita a estas estimativas iniciais de \(f_x \).

As taxas \(f_x \) acumuladas, oferecem consequentemente, uma nova versão da parturição, \(P^*(x) \). Com esta série estima-se novamente a parturição média \(P(a) \), à idade exata \(a \) das dez coortes \(P_i(a) \), que atingiram essa idade durante o período intercensitário.

Com esta segunda estimativa de \(P(a) \) e os dados inicialmente registrados de parturição nos dois censos, utiliza-se outra vez a relação (9), mas a ponderação é calculada de forma diferente, incorporando destas vezes valores de \(P^*(x) \).

Assim:

\[
W = \frac{(P^*(a) - L^*_{P})}{1^*_{P} \cdot T - L^*_{P}}
\]

onde:

\[
1^*_{P} = \frac{(P^*(x) + P^*(x + 1))}{2}
\]

Temos assim uma segunda estimativa para \(P(a) \) produto de uma primeira iteração, (Coluna 4 da Tabela 2). Com esta segunda série de valores da parturi-
ção à idade exata novamente utiliza-se a relação (7) a fim de obter uma segunda estimativa de I_x.

Nesta segunda série de taxas de fecundidade, que não é mais produto de uma interpolação linear, os valores são acumulados novamente a fim de obter, outra vez, uma parturição hipotética, $(P^*(x))$. Consequentemente pode-se calcular outra vez valores de $P(a)$ e I_x (2). Temos assim um processo iterativo que permitirá, cada vez, estimativas de I_x.

As iterações devem conduzir a resultados semelhantes, à medida que aumenta o número de iterações e, segundo os autores, a convergência deve acontecer logo entre a segunda e a terceira iteração. Na presente aplicação as modificações de envergadura se deram nas primeiras iterações e principalmente nas idades mais jovens, sendo que tais modificações foram perdendo importância na terceira e quarta iteração (Tabela 4).

4. OS RESULTADOS

A Tabela 1 apresenta — para grupos quinquenais — as taxas específicas de fecundidade obtidas exclusivamente a partir da informação sobre parturição dos censos de 1970 e 1980 para o ponto médio do período intercensitário, isto é, 1975 aproximadamente.

Em primeiro lugar, o nível obtido: uma taxa de fecundidade total de 4,55 na última iteração, está dentro do esperado. Apoia-se esta afirmação na constatação de que estimativas dos mesmos censos, indicam taxas em torno de 5,65 e 4,35 para 1978 e 1980 respectivamente (LEITE, 1980 e RODRIGUEZ WONG, 1984).

É interessante salientar, também, que uma versão preliminar da aplicação do método dos filhos próprios assinala para o período 1974-76 uma taxa de

(2) Dado que o procedimento implica em seguir o comportamento das coortes existentes em 1970, o seguimento somente é possível para as coortes com até 39 anos. Assim para o cálculo das I_x das idades 40 e mais assumem-se uma diminuição proporcionalmente quadrática a partir de I_{39}.

1221
4.44 filhos (CEDEPLAR, 1986); esta pequena diferença, tratando-se de dados totalmente diferentes, é indicador de que o resultado obtido é razoavelmente confiável.

Adicionalmente, se tal como as estatísticas vitais e ainda o método de Brass estão indicando que na segunda metade da década de 80 teria havido uma desaceleração da queda da fecundidade, o valor encontrado estaria sugerindo, coincidentemente, que o maior percentual de declínio teria acontecido no primeiro quinquênio da década.

Em relação ao padrão etário, os resultados também indicam coerência. A idade média da fecundidade situa-se em torno de 29 anos, sendo um dado similar ao obtido com o método dos "filhos próprios" que indica uma idade média de 29,21 anos; sendo reconhecida a tendência deste método de "envelhecer" a curva da fecundidade, os valores seriam, assim, coincidentes.

Outra fonte que nos permite uma comparação adicional, embora não exista total coincidência no período, é a PNAD-76, onde a idade média é de 29,15 anos (Anexo A).

Finalmente, o Gráfico 1 visualiza o comportamento por idade dos resultados aqui obtidos em comparação com as duas outras estimativas citadas e incluindo também uma estrutura etária obtida do registro civil.

As curvas, no geral, são similares, pois coincidem em situar a cúspide no grupo etário 25-29, e os valores adjacentes a este grupo, com exceção daquele obtido do registro civil situam-se perto, seja para mais ou para menos, da estimativa obtida a partir da parturição. Nota-se no entanto, para esta última, uma maior concentração na cúspide, fato que é provocado, em parte, pelo rápido descenso da fecundidade ao aumentar a idade imposto para o final da curva. Sen- do que os dados do Registro Civil, embora com uma cobertura aproximada de 70%, acusam uma concentração nesse mesmo grupo etário ainda maior, o questionamento dos resultados aqui obtidos fica relativizado.

De todas as formas, acredita-se que estas diferenças não invalidam as observações feitas a respeito da coerência das estimativas aqui apresentadas.
5. CONSIDERAÇÕES FINAIS

Os resultados apresentados no item anterior permitem concluir, em termos gerais, que o método de "taxas de crescimentos variáveis por idade", aplicando os dados de parturição, permite estimativas confiáveis para o intervalo de tempo que cobrem os dados com que se está trabalhando. O método tem uma série de vantagens que tornam atrativa sua utilização. Em primeiro lugar, como já foi mencionado, incorpora o fato de mudanças nos níveis, seja aumento ou diminuição. Isto é, supera o pressuposto da constância. Ao considerar o fenômeno da parturição, e não as mulheres, estaria isolando também a perturbação que implica trabalhar com populações abertas. Este princípio, além do mais, está implícito na relação (1); no entanto é um aspecto que precisa ser pesquisado com maior detalhe. Outra vantagem, esta de ordem prática, consiste na pouca exigência de dados, junto com a pouca exigência de infraestrutura computadorizada, tornando igualmente viável este tipo de exercício.

Mesmo sendo possível contar com mais um método que permita estimativas confiáveis, ainda é preciso ter certa cautela, pois embora esta aplicação tenha proporcionado resultados coerentes, é necessário salientar que a condição essencial partir de dados iniciais altamente confiáveis, isto é, no caso da parturição, a informação deve corresponder ao que se espera: um incremento regular cada vez maior até uma certa idade e logo uma diminuição gradativa deste incremento. Irregularidades na curva da parturição por idades simples conduzirão as estimativas viesadas, pois os valores de \(f_x \), eventualmente erráticos no início dos cálculos, por causa do processo iterativo incidirão sempre nos resultados posteriores.

Assim, se os dados registrados de parturição são irregulares deverão ser corrigidos, seja a olho nu, seja mediante algum tipo de ajuste, fato que pode implicar em modificações arbitrárias dos dados.

Por outro lado, a operacionalização do método foi idealizada em função de dados separados no tempo por cinco anos, sendo que aqui, tentou-se fazer o teste para um intervalo de dez anos. Isto significa, no caso, dispor de dados do crescimento da coorte até a idade 40 (Tabela 3). Tal situação nos levou a
supor uma diminuição da curva de fecundidade proporcionalmente quadrática para as idades superiores, seguindo um exemplo do próprio autor. Pode-se argumentar que nesta faixa (40-50 anos) a fecundidade não tem um intervalo significativo de variação e portanto qualquer suposto adotado estará sempre perto da realidade; de qualquer maneira, não deixam de ser dez anos na idade da mulher, durante os quais está exposta a riscos diferenciados de ter filhos.

Por último, queremos salientar que as relações aqui apresentadas, podem ser aplicadas também a dados de parturição por ordem de nascimento. Os autores apresentam resultados amplamente confiáveis, que face à grande demanda por este tipo de conhecimento no nosso meio, cria a necessidade de dispor de dados brasileiros convenientemente desagregados necessários para obter o perfil da fecundidade por ordem de nascimentos. Todavia, tendo em vista os quesitos contidos na PNAD-84 no suplemento de fecundidade, um exercício semelhante ao aqui apresentado seria de grande valor, uma vez que permitirá avaliar as informações sobre ordem de nascimentos ali contidas.
Tabela 1

BRASIL - 1975
Taxas de FECUNDIDADE por Grupos Quinquenais de Idade Obtidas a Partir da Informação sobre Parturição nos Censos de 1970 e 1980 (por mil)

<table>
<thead>
<tr>
<th>Grupos de Idade</th>
<th>Interpolação Linear</th>
<th>Processo Iterativo 1a.</th>
<th>2a.</th>
<th>3a.</th>
<th>4a.</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-19</td>
<td>115.9</td>
<td>98.1</td>
<td>91.3</td>
<td>88.1</td>
<td>86.5</td>
</tr>
<tr>
<td>20-24</td>
<td>178.8</td>
<td>181.7</td>
<td>183.8</td>
<td>188.4</td>
<td>188.9</td>
</tr>
<tr>
<td>25-29</td>
<td>220.4</td>
<td>240.0</td>
<td>244.9</td>
<td>246.1</td>
<td>247.7</td>
</tr>
<tr>
<td>30-34</td>
<td>191.0</td>
<td>202.3</td>
<td>198.5</td>
<td>198.2</td>
<td>195.2</td>
</tr>
<tr>
<td>35-39</td>
<td>134.4</td>
<td>133.4</td>
<td>134.9</td>
<td>135.7</td>
<td>136.1</td>
</tr>
<tr>
<td>40-44</td>
<td>62.9</td>
<td>49.8</td>
<td>50.0</td>
<td>50.1</td>
<td>50.1</td>
</tr>
<tr>
<td>45-49</td>
<td>17.0</td>
<td>6.0</td>
<td>6.0</td>
<td>6.1</td>
<td>6.1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>920.4</td>
<td>911.0</td>
<td>909.3</td>
<td>912.3</td>
<td>910.6</td>
</tr>
</tbody>
</table>

Taxa de FECUNDIDADE 4,602 4,555 4,546 4,564 4,553

Idade Média 29,16 28,95 29,02 29,03 29,04

Desvio Padrão 7,56 6,98 6,93 6,91 6,91

Gráfico 1

BRASIL

Distribuição Percentual das Taxas de Fecundidade por Idade Obtidas de Diversas Fontes

FONTE: Anexo A.
<table>
<thead>
<tr>
<th>Idade</th>
<th>Parturição entre a Idade (x) e (x+1)</th>
<th>Parturição na Idade Exata a (P(a))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1970 (1)</td>
<td>1980 (2)</td>
</tr>
<tr>
<td>15</td>
<td>0.0125</td>
<td>0.0208</td>
</tr>
<tr>
<td>16</td>
<td>0.0315</td>
<td>0.0452</td>
</tr>
<tr>
<td>17</td>
<td>0.0818</td>
<td>0.1253</td>
</tr>
<tr>
<td>18</td>
<td>0.1836</td>
<td>0.2222</td>
</tr>
<tr>
<td>19</td>
<td>0.3296</td>
<td>0.3730</td>
</tr>
<tr>
<td>20</td>
<td>0.5480</td>
<td>0.5460</td>
</tr>
<tr>
<td>21</td>
<td>0.7646</td>
<td>0.7290</td>
</tr>
<tr>
<td>22</td>
<td>1.0932</td>
<td>0.9580</td>
</tr>
<tr>
<td>23</td>
<td>1.3735</td>
<td>1.1050</td>
</tr>
<tr>
<td>24</td>
<td>1.6390</td>
<td>1.3410</td>
</tr>
<tr>
<td>25</td>
<td>2.0318</td>
<td>1.4200</td>
</tr>
<tr>
<td>26</td>
<td>2.3103</td>
<td>1.6300</td>
</tr>
<tr>
<td>27</td>
<td>2.5500</td>
<td>1.8700</td>
</tr>
<tr>
<td>28</td>
<td>2.9265</td>
<td>2.1000</td>
</tr>
<tr>
<td>29</td>
<td>3.1780</td>
<td>2.3333</td>
</tr>
<tr>
<td>30</td>
<td>3.5390</td>
<td>2.5960</td>
</tr>
<tr>
<td>31</td>
<td>3.3750</td>
<td>2.7870</td>
</tr>
<tr>
<td>32</td>
<td>4.0000</td>
<td>3.0870</td>
</tr>
<tr>
<td>34</td>
<td>4.4200</td>
<td>3.4690</td>
</tr>
<tr>
<td>35</td>
<td>4.6240</td>
<td>3.6560</td>
</tr>
<tr>
<td>38</td>
<td>5.1330</td>
<td>4.2300</td>
</tr>
<tr>
<td>39</td>
<td>5.2700</td>
<td>4.4200</td>
</tr>
<tr>
<td>42</td>
<td>5.5200</td>
<td>4.8700</td>
</tr>
<tr>
<td>44</td>
<td>5.6500</td>
<td>5.3000</td>
</tr>
<tr>
<td>45</td>
<td>5.6800</td>
<td>5.1400</td>
</tr>
<tr>
<td>46</td>
<td>5.7000</td>
<td>5.1800</td>
</tr>
<tr>
<td>47</td>
<td>5.7200</td>
<td>5.2200</td>
</tr>
<tr>
<td>48</td>
<td>5.7300</td>
<td>5.2900</td>
</tr>
<tr>
<td>49</td>
<td>5.7400</td>
<td>5.2800</td>
</tr>
</tbody>
</table>

TOTAL: 4.610 4.555 4.546 4.563

Tabela 3

BRASIL - 1970-1980

Parturição Média à Idade Exata (\(\bar{F}(a)\)) das Coortes que Atingiram a Idade "a" durante o Período Intercensitário

<table>
<thead>
<tr>
<th>Idade</th>
<th>Interpolação Linear (1)</th>
<th>1a. Iteração (2)</th>
<th>2a. Iteração (3)</th>
<th>3a. Iteração (4)</th>
<th>4a. Iteração (5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>0</td>
<td>0.068</td>
<td>0.058</td>
<td>0.052</td>
<td>0.048</td>
</tr>
<tr>
<td>16</td>
<td>0.092</td>
<td>0.149</td>
<td>0.130</td>
<td>0.120</td>
<td>0.108</td>
</tr>
<tr>
<td>17</td>
<td>0.308</td>
<td>0.244</td>
<td>0.217</td>
<td>0.203</td>
<td>0.194</td>
</tr>
<tr>
<td>18</td>
<td>0.434</td>
<td>0.356</td>
<td>0.324</td>
<td>0.308</td>
<td>0.300</td>
</tr>
<tr>
<td>19</td>
<td>0.572</td>
<td>0.483</td>
<td>0.449</td>
<td>0.433</td>
<td>0.423</td>
</tr>
<tr>
<td>20</td>
<td>0.725</td>
<td>0.632</td>
<td>0.597</td>
<td>0.583</td>
<td>0.576</td>
</tr>
<tr>
<td>21</td>
<td>0.892</td>
<td>0.797</td>
<td>0.762</td>
<td>0.748</td>
<td>0.742</td>
</tr>
<tr>
<td>22</td>
<td>1.077</td>
<td>0.985</td>
<td>0.953</td>
<td>0.943</td>
<td>0.939</td>
</tr>
<tr>
<td>23</td>
<td>1.282</td>
<td>1.200</td>
<td>1.173</td>
<td>1.167</td>
<td>1.164</td>
</tr>
<tr>
<td>24</td>
<td>1.495</td>
<td>1.429</td>
<td>1.405</td>
<td>1.400</td>
<td>1.406</td>
</tr>
<tr>
<td>25</td>
<td>1.742</td>
<td>1.698</td>
<td>1.685</td>
<td>1.688</td>
<td>1.689</td>
</tr>
<tr>
<td>26</td>
<td>2.000</td>
<td>1.976</td>
<td>1.971</td>
<td>1.980</td>
<td>1.983</td>
</tr>
<tr>
<td>27</td>
<td>2.251</td>
<td>2.252</td>
<td>2.251</td>
<td>2.261</td>
<td>2.265</td>
</tr>
<tr>
<td>28</td>
<td>2.514</td>
<td>2.535</td>
<td>2.539</td>
<td>2.547</td>
<td>2.553</td>
</tr>
<tr>
<td>29</td>
<td>2.773</td>
<td>2.809</td>
<td>2.816</td>
<td>2.824</td>
<td>2.827</td>
</tr>
<tr>
<td>30</td>
<td>3.033</td>
<td>3.079</td>
<td>3.088</td>
<td>3.095</td>
<td>3.097</td>
</tr>
<tr>
<td>32</td>
<td>3.520</td>
<td>3.586</td>
<td>3.597</td>
<td>3.596</td>
<td>3.591</td>
</tr>
<tr>
<td>33</td>
<td>3.745</td>
<td>3.810</td>
<td>3.823</td>
<td>3.819</td>
<td>3.818</td>
</tr>
<tr>
<td>34</td>
<td>3.962</td>
<td>4.030</td>
<td>4.043</td>
<td>4.038</td>
<td>4.037</td>
</tr>
<tr>
<td>38</td>
<td>4.716</td>
<td>4.787</td>
<td>4.807</td>
<td>4.805</td>
<td>4.807</td>
</tr>
<tr>
<td>39</td>
<td>4.865</td>
<td>4.930</td>
<td>4.948</td>
<td>4.946</td>
<td>4.948</td>
</tr>
</tbody>
</table>

FONTE: Vide texto.
<table>
<thead>
<tr>
<th>Idade</th>
<th>Interpolação Linear (1)</th>
<th>Taxas Específicas de Fecundidade (*)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1a. Iteração (2)</td>
</tr>
<tr>
<td>15</td>
<td>92.5</td>
<td>68.6</td>
</tr>
<tr>
<td>16</td>
<td>103.6</td>
<td>82.1</td>
</tr>
<tr>
<td>17</td>
<td>115.0</td>
<td>96.4</td>
</tr>
<tr>
<td>18</td>
<td>128.1</td>
<td>113.9</td>
</tr>
<tr>
<td>19</td>
<td>140.1</td>
<td>129.7</td>
</tr>
<tr>
<td>20</td>
<td>153.3</td>
<td>148.7</td>
</tr>
<tr>
<td>21</td>
<td>165.4</td>
<td>163.1</td>
</tr>
<tr>
<td>22</td>
<td>178.0</td>
<td>181.3</td>
</tr>
<tr>
<td>23</td>
<td>191.7</td>
<td>201.3</td>
</tr>
<tr>
<td>24</td>
<td>205.6</td>
<td>214.1</td>
</tr>
<tr>
<td>25</td>
<td>216.8</td>
<td>239.1</td>
</tr>
<tr>
<td>26</td>
<td>221.1</td>
<td>243.2</td>
</tr>
<tr>
<td>27</td>
<td>225.0</td>
<td>242.6</td>
</tr>
<tr>
<td>28</td>
<td>222.4</td>
<td>241.7</td>
</tr>
<tr>
<td>29</td>
<td>216.5</td>
<td>231.7</td>
</tr>
<tr>
<td>30</td>
<td>212.6</td>
<td>226.6</td>
</tr>
<tr>
<td>31</td>
<td>203.4</td>
<td>216.0</td>
</tr>
<tr>
<td>32</td>
<td>189.9</td>
<td>206.0</td>
</tr>
<tr>
<td>33</td>
<td>179.1</td>
<td>190.0</td>
</tr>
<tr>
<td>34</td>
<td>170.2</td>
<td>173.1</td>
</tr>
<tr>
<td>35</td>
<td>160.7</td>
<td>164.1</td>
</tr>
<tr>
<td>36</td>
<td>149.8</td>
<td>148.6</td>
</tr>
<tr>
<td>37</td>
<td>133.0</td>
<td>133.8</td>
</tr>
<tr>
<td>38</td>
<td>122.2</td>
<td>122.8</td>
</tr>
<tr>
<td>39</td>
<td>106.4</td>
<td>97.6</td>
</tr>
<tr>
<td>40</td>
<td>89.3</td>
<td>79.1</td>
</tr>
<tr>
<td>41</td>
<td>70.0</td>
<td>62.5</td>
</tr>
<tr>
<td>42</td>
<td>63.8</td>
<td>47.8</td>
</tr>
<tr>
<td>43</td>
<td>51.1</td>
<td>35.1</td>
</tr>
<tr>
<td>44</td>
<td>40.4</td>
<td>24.4</td>
</tr>
<tr>
<td>45</td>
<td>27.7</td>
<td>15.6</td>
</tr>
<tr>
<td>46</td>
<td>22.3</td>
<td>8.8</td>
</tr>
<tr>
<td>47</td>
<td>12.8</td>
<td>3.9</td>
</tr>
<tr>
<td>48</td>
<td>11.7</td>
<td>1.0</td>
</tr>
<tr>
<td>49</td>
<td>10.6</td>
<td>0.6</td>
</tr>
</tbody>
</table>

TOTAL 4,610 4,555 4,546 4,563 4,553

FONTE: Vide texto. (*) P/1000 mil.
ANEXO A

BRASIL

Distribuição Percentual das Taxas de Fecundidade por Grupos Quinzenais de Idade

<table>
<thead>
<tr>
<th>Grupo Etário</th>
<th>Última Iteração (1)</th>
<th>Filhos * Próprios (2)</th>
<th>PNAD 76 (3)</th>
<th>Registro Civil de 1976 (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-19</td>
<td>9.50</td>
<td>8.90</td>
<td>6.76</td>
<td>8.40</td>
</tr>
<tr>
<td>20-24</td>
<td>20.74</td>
<td>23.12</td>
<td>22.11</td>
<td>25.80</td>
</tr>
<tr>
<td>25-29</td>
<td>27.20</td>
<td>25.24</td>
<td>25.26</td>
<td>27.62</td>
</tr>
<tr>
<td>30-34</td>
<td>21.44</td>
<td>21.04</td>
<td>21.65</td>
<td>19.56</td>
</tr>
<tr>
<td>35-39</td>
<td>14.95</td>
<td>14.02</td>
<td>15.19</td>
<td>12.16</td>
</tr>
<tr>
<td>40-44</td>
<td>5.50</td>
<td>6.78</td>
<td>7.40</td>
<td>5.32</td>
</tr>
<tr>
<td>45-49</td>
<td>0.67</td>
<td>1.61</td>
<td>1.62</td>
<td>1.16</td>
</tr>
<tr>
<td>Idade Média</td>
<td>23.04</td>
<td>29.21</td>
<td>29.15 **</td>
<td>28.59</td>
</tr>
<tr>
<td>Desvio Padrão</td>
<td>6.91</td>
<td>7.25</td>
<td>7.14</td>
<td>6.88</td>
</tr>
</tbody>
</table>

FONTE: (1). Tabela 1.
(2). CEDEPAR (1986).
(3). Fundação IBGE - Brasil PNAD-76.
* Média dos Anos 1974 a 1976
** Calculada com 0.5 anos a menos por ser obtida através de informação sobre nascimentos ocorridos nos últimos 12 meses anteriores à pesquisa.
BIBLIOGRAFIA DE REFERÊNCIA

BIBLIOGRAFIA COMPLEMENTAR

